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Abstract

An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is devel-
oped. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown
fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also
Weibull theory is introduced to consider the statistics and size effects on particle strength.
Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated
using this newly developed model. Comparisons with experiments show that our particle
fracture model can capture the mechanical behavior of this experiment very well, both in
stress-strain response and particle size redistribution. The effects of density and packings of
the samples are also studied in numerical examples.

Keywords: Discrete Element Method, particle fracture model, high strain rate, split
Hopkinson pressure bar experiments, Hoek-Brown fracture criterion, maximum tensile stress
in contacts, packing effects
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1 Introduction

It is well known that knowledge of behavior of soils is very important in geotechnical en-
gineering, mining engineering and petroleum engineering. Soil behavior is also important
in areas of debris flow, landslides, pavement, and dam construction [Horner et al., 2001,
Regueiro et al., 2014]. The mechanical behavior of soils is complicated because of its dis-
crete nature [Zhu et al., 2008]. On the other hand, macroscale behavior of soils results
from particle-level interactions [Cho et al., 2006]. Thus, the investigation of soils at multiple
scales is necessary to understand their bulk mechanical response. Particle fractures in one-
dimensional and triaxial compression experiments have been reported in the literature Vesic
and Clough [1968], Yamamuro et al. [1996], Luo et al. [2014a,b, 2011]. The macro-behavior
of soils, such as stress-strain path, strength, permeability, are affected by particle fracture,
which was observed in Yamamuro et al. [1996], Lade et al. [1996]. The split Hopkinson pres-
sure bar (SHBP) is a widely used experimental approach in studies of compressive behavior
of soils at high strain-rate. Using this method, [Kabir et al., 2010, Luo et al., 2011, Bari
et al., 2012] observed clear grain size redistribution caused by fractures of sand grains during
experiment. Thus, a successful numerical model of soils should take into account fracture
of sand grains in order to accurately predict the mechanical behavior of soils at high strain
rate.

The Discrete Element Method (DEM) [Cundall and Strack, 1979] is often used in geotech-
nical engineering to simulate the motion of individual particles/grains within a deform-
ing/flowing granular medium[Horner et al., 2001, Hopkins, 2004, Zhu et al., 2008, Yan et al.,
2010, O’Sullivan, 2011, Knuth et al., 2012]. Many investigations have constructed particle
fracture models in DEM and have used these models to study mechanical behavior of soils
and to simulate experiments. A common research approach is to model particle fracture using
spring or beam elements to bond many small sub-particles (e.g. spheres, cylinders and tri-
angles), forming a large single particle; breakage of these bonds will allows subdivision of the
large particle[Potapov and Campbell, 1994, Cheng et al., 2003, Robertson and Bolton, 2001,
Hosseininia and Mirghasemi, 2006, Refahi et al., 2010, Cil and Alshibli, 2012, André et al.,
2013]. This method has been used in studies of single-particle fracture or small-scale prob-
lems. However, it is too expensive to be applied in large simulations. Åström and Herrmann
[1998], Tsoungui et al. [1999], Ben-Nun et al. [2010], Ben-Nun and Einav [2010], McDowell
and de Bono [2013] constructed a spherical DEM model in which spherical particles are
allowed to break into several smaller spheres based on some stress-based fracture criterion.
Their method was applied successfully to phenomena such as self-organization, particle size
redistribution, change of void ratio, and critical state by simulating compaction of soils with
capability of particle fracture. Cundall and Hart [1985] proposed a 2-dimensional method
to break polygons into two sub-polygons through the line connecting the two loading points
with the maximum loads. In this model polygons can be broken in an arbitrary direction,
which is determined by the loadings. This is shown to be a useful model in studying fracture
initiation in rocks.

Although many researches have modeled particle fracture DEM, to the authors’ knowl-
edge, there is no research published to study numerically the mechanical behavior of soils
under high strain-rate compressive loading, such as SHPB experiments. The motivation
of this research is to develop a DEM model that is able to simulate SHPB experiments
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at high strain-rate. At present, spheres have the fastest contact search algorithm in DEM
[Cundall and Strack, 1979, Peters et al., 2009, Wellmann et al., 2008], followed by ellipsoids
[Hopkins, 2004, Yan et al., 2010], poly-ellipsoids [Peters et al., 2009, Knuth et al., 2012],
super-ellipsoids [Wellmann et al., 2008], super-quadrics [Wellmann and Wriggers, 2012] and
polyhedra [Nezami et al., 2004, Hopkins, 2010]. Alternatively, a level set can be used to
represent particle shapes such as in [Andrade et al., 2012], but the trade-off is a more costly
contact detection algorithm and more memory requirements for the storage of the particles.
In this research, we employ a balanced approach by using poly-ellipsoids, which approx-
imate the geometry of complex particle shapes while providing the advantage of efficient
ellipsoidal contact search algorithms. A general poly-ellipsoid is a compound, smooth, non-
symmetric shape with each octant composed of an eighth of an ellipsoid [Peters et al., 2009].
Compared to spheres and ellipsoids, poly-ellipsoids are potentially non-symmetric, and thus
have more resistance to rolling, which can lead to more physically-realistic results [Peters
et al., 2009]. Also, as a poly-ellipsoid, the particle can be sub-divided into several differ-
ent sub-poly-ellipsoids, upon which we can establish a efficient, first-order particle fracture
model.

In our particle fracture model, the continuum/average stress within a particle and and
the maximum tensile stresses in contacts will both be used as fracture criterion. It is exper-
imentally observed (c.f. [Hardin, 1985, Lade et al., 1996]) that material strengths decreases
for larger grains, due to the increased probability of defects exisiting within larger grains.
This apparent size-dependence of material strength can be described by Weibull statistics
theory [Tsoungui et al., 1999, Ben-Nun et al., 2010, Ben-Nun and Einav, 2010, McDowell
and de Bono, 2013, Brzesowsky et al., 2011, Strack et al., 2015, Weibull, 1951], which is also
included in our model.

2 Geometry of poly-ellipsoid

The poly-ellipsoid geometry is described following the definition by Peters et al. [2009]. As in
Figure 1, eight different ellipsoids are combined together with smoothed surfaces to construct
a poly-ellipsoid. Each octant of the poly-ellipsoid is composed of one eighth of an ellipsoid
with its center at (x0, y0, z0), whose implicit equation is(

x− x0

a

)2

+

(
y − y0

b

)2

+

(
z − z0

c

)2

= 1 (1)

where a, b and c are the three semi-principal-lengths of ellipsoid.
Suppose ai, bi and ci are the semi-principal-lengths of the ith ellipsoid in octant i (i =

1, 2, . . . , 8). Then we can obtain six independent parameters based upon the smooth-
condition of a poly-ellipsoid. For example, if ellipsoid 1 and ellipsoid 4 share the same
boundary at plane y = 0, then the surface should be smooth along this boundary plane,
which yields the condition c1 = c4. Similarly, relations between the eight sets of semi-
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Figure 1: Poly-ellipsoid constructed from octants of eight ellipsoids, motivated by Peters et al.
[2009].

principal-lengths can be described as [Peters et al., 2009],

a2 = a3 = a6 = a7 = a+

a1 = a4 = a5 = a8 = a−

b1 = b2 = b5 = b6 = b+

b3 = b4 = b7 = b8 = b−

c1 = c2 = c3 = c4 = c+

c5 = c6 = c7 = c8 = c−

(2)

where a+, a−, b+, b−, c+ and c− are the semi-principal-lengths of a poly-ellipsoid along
positive and negative directions of the principal axes. Now we can see that the size and
shape of poly-ellipsoids are controlled by these six independent parameters instead of only
three parameters for ellipsoids. As a result, “sharper” and more realistic particle shapes can
be represented with the six-parameter poly-ellipsoids versus the three-parameter ellipsoids.

3 Description of our particle fracture model in DEM

As shown in Figure 2, our adaptive particle fracture model has two steps: (1) Flag a particle
that may break, and sub-divide it into sub-poly-ellipsoids bonded by springs as in Figure
3. At this time, the sub-particles will have the same kinetic state, such as velocity and
angular velocity as the original particle. (2) Each spring has a breakage criterion, and when
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all springs for a sub-poly-ellipsoid have broken, this sub-particle is free and it can be sub-
divided and broken again. With the help of springs that are bonding sub-particles, this
adaptive particle fracture model can represent the three different fracture modes, namely
the opening mode, shearing mode and tearing mode.

In this brief introduction we identify several important aspects of the particle-fracture
model that govern when and how a particle is sub-divided. The “when” depends on the
breakage criterion and material strength of sand grains; the “how” depends on the determi-
nation of the break plane and the configuration of springs.

flag grain for breakage

subdivide grain into bonded

sub-poly-ellipsoids to model

grain breakage

Figure 2: The adaptive fracture model has two steps, (1) sub-divide a particle into several sub-
particles bonded by springs, and (2) break the springs.

(a)

Y X

Z

(b)

Figure 3: A poly-ellipsoid is sub-divided into sub-poly-ellipsoids bonded by springs.
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3.1 Models and parameterization describing DEM particle frac-
ture

Figure 4 and 5 show the tensile stress contours within disks under uniaxial compression and
biaxial compression, respectively, simulated using a Material Point Method (MPM) code,
Uintah [Guilkey et al., 2009]. The stress scale is in units of Pa and the scale is in [m].
The scale of the problem is more appropriate for the contact and fracture of boulder sized
spheres, but the observation of a tensile region outside the contact area and the effect of
loading condition are equally valid for small or large sized grains. Figure 4 shows that
there is region of tensile stress inside the disk under uniaxial compression, which is along
the loading axis. Aside from the stress concentration near the contact point, the maximum
principal stress is at the center of the disk. However, the interior tensile stresses are not
obvious and are much smaller within the disk under biaxial compression (Figure 5). Because
of this, particles under uniaxial compression fail at a lower force than those under biaxial
compression. This demonstrates that the mode of loading, not simply the magnitude of the
forces, bust be accounted for when estimating a failure stress for a particle.

The fracture criterion for a particle should reflect this dependence on loading mode, i.e.
particles under uniaxial compression should fail more easily than particles under biaxial
compression/triaxial compression in 3D. The ideal approach would be to find a closed-form
solution for tensile stress σt in the center of the ellipsoid/sphere, and then allow the particle
to break if σt > σc, where σc is the tensile strength for the particle. However, a tractable
closed-form elasticity solution does not exist for general loading of a poly-ellipsoid. To ap-
proximate the peak stress, we use a continuum/average stress for single particle and input this
continuum/average stress into the Hoek-Brown fracture criterion [Hoek and Martin, 2014]
to determine whether particles will fail under a given loading. The Hoek-Brown fracture cri-
terion is selected because the abundance of experimental data that is suitable for calibration
of the model parameters [Hoek and Martin, 2014], as well as the previously demonstrated
capability of the model to predict brittle failure in numerical simulations [Lan et al., 2010].
Other researchers have used a Brazilian (c.f., Tsoungui et al. [1999], Ben-Nun et al. [2010],
Ben-Nun and Einav [2010]) or octahedral shear stress (c.f., McDowell and de Bono [2013])
criterion for their DEM particle fracture model; justifying the use of such models with the
assertion that particles under symmetric loading will not break. However, our numerical and
experimental evidence shows that particles under such loadings may, in fact, be fractured.

3.1.1 Continuum/average stress formulation for a single DEM particle

Before the discussion of Hoek-Brown fracture criterion, let us first look into the continu-
um/average stress for a single particle. Andrade et al. [2012] derived a formulation for the
continuum/average stress of an individual particle in a static state. We extend this analysis
to compute the continuum/average stress for an individual particle in a dynamic state as
follows.
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Figure 4: Contour of tensile stress inside a disk under uniaxial compression, simulated using
Uintah. Aside from the stress concentration near the contact point, the largest tensile stresses
occur at the center of the disk.
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Figure 5: Contour of tensile stress inside a disk under biaxial compression, simulated using Uintah.
The internal tensile stresses are lower than for the uniaxial loading case.
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From the Gaussian theorem, we have

∂σijxk
∂xj

=
∂σij
∂xj

xk + σij
∂xk
∂xj

=
∂σij
∂xj

xk + σijδkj

=
∂σij
∂xj

xk + σik.

(3)

Thus we have

σik =
∂σijxk
∂xj

− ∂σij
∂xj

xk. (4)

Since
∂σij
∂xj

+ ρgi = ρai, we know

σik =
∂σijxk
∂xj

− ρ (ai − gi)xk. (5)

Then the average stress for individual particle is

σpik : =
1

Ωp

∫
Ωp

σik dΩp (6)

=
1

Ωp

∫
Ωp

∂σijxk
∂xj

dv − 1

Ωp

∫
Ωp

ρ (ai − gi)xk dv (7)

=
1

Ωp

Np
c∑

α=1

(fαi x
α
k )− ρp

Ωp

∫
Ωp

aixk dv +
ρp

Ωp

gi

∫
Ωp

xk dv, (8)

where Ωp is the particle domain, g gravity and a acceleration. Notice that from Eq.(7) to
(8), we use ∫

Ωp

∂σijxk
∂xj

dv =

∫
Γp

σijxknj da

=

Np
c∑
α

fαi x
α
k .

(9)

Acceleration a for point x can be calculated as

a = ao +α× d + ω × (ω × d)

= ao +α× (x− xo) + ω × [ω × (x− xo)]
(10)

We can calculate
∫

Ωp
ρa⊗ x dΩp in Eq.(8) in a local coordinate system whose origin is fixed

at the center-of-geometry of the poly-ellipsoid and then transfer the local matrix to get
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∫
Ωp
ρa⊗ x dΩp in the global system.∫

Ωp

ρa⊗ x dΩp = ρ

∫
Ωp

aixj dΩp (11)

= ρ

∫
Ωp

[aoi + εlkiαlxk + εlkiωlεmnkωmxn]xj dΩp (12)

= ρ

[
aoi

∫
Ωp

xj dΩp + εlkiαl

∫
Ωp

xkxj dΩp + εilkεmnkωlωm

∫
Ωp

xnxj dΩp

]
(13)

3.1.2 Hoek-Brown fracture criterion

The Hoek-Brown fracture criterion is stated as [Hoek and Martin, 2014]

σ1 = σ3 + σc

√
mi
σ3

σc
+ 1, (14)

where mi is a material constant, σc is the compressive strength of the particle, and σ1

and σ3 are the major and minor principle stress, respectively, where we use the convention
that positive stresses denote compression. Figure 6 is a plot for Hoek-Brown criterion with
mi = 20.56 and σc = 592MPa.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

σ
3
/σ

c

σ
1
/σ

c

Figure 6: Plot for Hoek-Brown fracture criterion with mi = 20.56 and σc = 592MPa. The red and
blue dots indicate the stresses for a critical uniaxial-compression stress state and a corresponding
sub-critical biaxial stress state.

We now evaluate whether the Hoek-Brown fracture criterion based on a continuum/av-
erage stress formulation is consistent with the observations in Figure 4 and 5, namely that
particles under uniaxial compression are easier to break than those under biaxial compres-
sion. We explore this question with a 2D example as follows.
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First, let us calculate the continuum/average stress for particles under uniaxial and bi-
axial compression. For particle under uniaxial compression as in Figure 7, the continuum
stress is

σ =
1

πr2

[
0 0
0 2rF

]
. (15)

Here the sign convention in the Hoek-Brown fracture criterion is used, namely that positive
stresses are compressive. With the Hoek-Brown sign convention, for this uniaxial com-
pression loading, σ1 = 2rF

πr2
= 2F

πr
and σ3 = 0. This continuum stress measure describes an

average over the particle domain, and cannot therefore reflect the possibility of tensile failure
at points within a particle, as there is no tensile stress in this result.

Particles under uniaxial compression loadings can be fractured in the Hoek-Brown crite-
rion, for example when σ3 = 0 and σ1 > σc. This capability is necessary for a suitable fracture
criterion, since experience and many experiments [Gallagher et al., 1974, Gallagher Jr et al.,
1976, Salman and Gorham, 2000, Nakata et al., 2001, Brzesowsky et al., 2011] conclusively
demonstrate that sand grains can break under uniaxial compression loadings.

Figure 7: Illustration of particle under uniaxial loading in 1D.

For particle under biaxial compression as in Figure 8, the continuum stress is

σ =
1

πr2

[
2rF 0

0 2rF

]
. (16)

Then for this biaxial compression loading, σ1 = σ3 = 2rF
πr2

= 2F
πr

.
The red dot in Figure 6 shows a stress state corresponding to particle failure under

uniaxial compression, with σ1 = σc and σ3 = 0. The blue dot in this figure shows a case of
biaxial loading with the same magnitude force for which the state is well within the fialure
surface. Thus, it shows that with this model particles under biaxial compression are more
difficult to break than particles under uniaxial compression, consistent with experimental
and numerical evidence.
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Figure 8: Illustration of particle under biaxial loading in 2D.

3.1.3 Local tensile stress fracture criterion

Particles under equibiaxial compression can never break in Hoek-Brown fracture criterion
as shown in Figure 6. However, we can imagine that physically there must exist some load
that will induce particle failure under biaxial compression loading. In consideration of this
physical reality, we introduce an additional fracture criterion determined by the maximum
tensile stress in contact areas on a particle. This means that we will check each particle
in simulations by two fracture criteria, either of which, when satisfied, will cause fracture
of the particle. Ben-Nun and Einav [2010] have also considered the possibility of contact
stress failure, but we use an entirely different approach that introduces a strong mechanics
foundation.

We compute the contact force at each contact point based on the overlap between two
ellipsoids using Hertzian contact theory, and then calculate the maximum tensile stress in this
contact area following the method described in [S.P. Timoshenko, 1970]. Suppose contact
radius a of a contact between two particles has already been calculated from Hertz-Mindlin
contact theory [Mindlin, 1949], and R1 and R2 are curvatures at the contact points of the
two particles, the maximum tensile stress at this contact area is [S.P. Timoshenko, 1970]

σt =
1− 2µ

3
q0, (17)

where q0 = 3F
2πa2

is the maximum pressure in contact area, and F is contact force which
is already calculated from Hertz-Mindlin contact theory. According to S.P. Timoshenko
[1970], the normal stress becomes zero along the circular boundary of the contact area, at
which point there exists a state of pure shear, which is 0.133q0 for sands with Poisson’s
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ratio ν = 0.3. This means that stress along the boundary of the contact area is already
very small, and the extent of influence of the contact stress is highly localized. Suppose
we have two spherical sand grains in contact with force F = 10N , where both grains have
Young’s modulus 60 GPa and Poisson’s ratio ν = 0.25, then the contact radius is a =

1.1356
3
√

F
E

R1R2

R1+R2
= 6.2494 × 10−4 3

√
R1R2

R1+R2
· 1 m2. If we further assume R1 = R2 = 0.3 mm,

then the contact area is approximately equal to 3.0628× 10−3A, where A is the surface area
of the sphere. This example demonstrates that the contact area is extremely small compared
to the surface area of the particle. Because of this, for nearly spherical bodies of comparable
size, the contact points never be close enough for there to be significant interactions between
the contact stresses. Thus, even if there are multiple contact points on a particle, the local
maximum tensile stress for each contact can be computed from Equation (17) with no needs
to consider influence from other contacts.

We then identify a critical contact at any point where maximum tensile contact stress
exceeds the tensile strength of the particle. If three or more critical points exist, the contact
fracture criterion for the particle is met, and the particle will break. The limitation of this
fracture criterion is that it does not distinguish between different loading states (for example,
biaxial or triaxial), and the particle failure depends only on the maximum tensile stress in
each contact. However, by combining the contact failure criterion with the Hoek-Brown
continuum/average stress fracture criterion, we are able to overcome the limitations of using
either method individually and better describe particle failure in diverse modes of loading.

3.2 Defining strength for the “break” criteria

To apply the fracture criteria and determine whether a particle will break at a given load it
is necessary to define and parameterize an appropriate material strength measure for each
criterion. In our work we have two material strengths to be determined in our fracture
model, a compressive strength for the Hoek-Brown criterion and a local tensile strength for
contact failure. Initially, we would like parameterize the failure strength in these models with
experimental data for single sand-grain fracture. We complete this parameterization process
for one such experiment1, for which the comparison between simulation and experiment
are given in Section 4. From this comparison, we can see that our model is able to fit
the experimental curve very well. However, we found that there was significant test-to-test
variability in the available experimental results for single particle fracture.

To extend our analysis we apply our analysis to the published results from investigations
by [Hoek and Martin, 2014, Brzesowsky et al., 2011]. Brzesowsky et al. [2011] did many
experiments (200 sand grains for each size) for single sand grain fracture under diametric
compression between flat platens. They calculated tensile strengths in contacts for each frac-
tured sand grain using Hertzian contact theory, and generated a relation of tensile strength
and grain size. These data were a valuable resource for parameterizing the tensile strength
for the contact-stress particle fracture model. Based on the results of [Hoek and Martin,
2014, Brzesowsky et al., 2011], we also introduce a Weibull-distributed variable strength as

1The results are one example from numerous tests from unpublished results from Prof. Khalid Alshibli’s
group at University of Tennessee Knoxville
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done in Ben-Nun et al. [2010],

σf (P ) = σfM ln (1/P )1/w (x/xM)−2w (18)

where σfM is the reference strength for a particle with reference size xM (here we use the
equivalent radius calculated as r = (3V/4π)1/3), P ∈ (0, 1) is a uniformly distributed variable,
and w is Weibull’s modulus.
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Figure 9: The Weibull function as w = 1, this function can reflect size effects of sand grains and
also Weibull’s statistics of strength [Ben-Nun et al., 2010]. Smaller particles are much stronger
than larger particles. For equally sized particles, such as x/xM = 1.0, the uniformly distributed
variable P introduces variation to the particles’ strengths.

This Weibull function is used to assign different strength values to particles even if their
shapes are exactly the same as shown in Figure 9, which we believe is necessary since it is
very possible that the initial flaw distribution will vary from particle to particle. Similarly,
our compressive strength σc and material constant mi in the Hoek-Brown fracture criterion
are from Hoek and Martin [2014].

3.3 Determination of the fracture plane location and orientation

Once a particle fracture criterion has been met, we next determine the plane along which
the particles will break. We call this plane the break plane. This determination is important
since the break plane will affect how well the generated sub-particles can capture the original
particle’s shape. Åström and Herrmann [1998], Tsoungui et al. [1999], Ben-Nun et al. [2010],
Ben-Nun and Einav [2010], McDowell and de Bono [2013] used spheres or circles to represent
their particles in DEM, and their fractured spheres/ circles are replaced by a set of smaller
spheres/circles. In some of these works, to account for the reduction in total volume of the
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smaller particles relative to that of the original particle, the authors either increase density
of the smaller particles, expand the particles’ volume over a short time, or entirely neglect
the mass loss. However, none theses choices can avoid some contact loss between the sub-
particles and the contacting neighbors of the original particle. In our method there is a
small loss of contact in sub-division, but the contact loss in our method is less severe than
in [Åström and Herrmann, 1998, Tsoungui et al., 1999, Ben-Nun et al., 2010, Ben-Nun and
Einav, 2010, McDowell and de Bono, 2013], and we have implemented a technique to reduce
the loss of contact, as described in Section 3.3.1.

Gallagher Jr et al. [1976], Salman and Gorham [2000] observed in their experiments that
a break plane is a meridian plane, so we assume that a break plane will pass through the
centroid in our particle fracture model. We have two fracture criteria in our particle fracture
model, for which we have very different methods to determine break plane. In the Hoek-
Brown fracture criterion, particles are fractured based on their continuum/average stresses.
The ideal break plane for this case would be normal to the minor principle direction of stress.
However, there is a limitation in our particle fracture model that we have to break particles
along principle directions of the poly-ellipsoid. This requirement allows us to sub-divide a
poly-ellipsoid into several poly-ellipsoids that fit the original shape well enough to mitigate
loss of contact. To select the break plane, we calculate the normal stress components along
the three principle directions of the poly-ellipsoid, and select the plane at which there is the
largest tensile normal stress.

In the fracture criterion by critical contacts, the break plane is defined by the 3 critical
contacts. The need for three points to define the plane as well as qualitative observations of
particle failure form the basis for our requiring 3 critical contacts for this mode of fracture.
The ideal break plane has the orientation of a plane passing through the critical points,
but has been shifted to pass through the centroid of the poly-ellipsoid as shown in Figure
10. However, considering the limitation of the determination of break plane, we have to
break poly-ellipsoids along their principle directions in geometry. There are three candidate
break planes, whose unit normal vectors in the local coordinate system of the poly-ellipsoid
are i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1), respectively. We can denote the unit normal
vector of the plane determined by the 3 critical contacts as n. We then select as the break the
candidate direction whose normal direction has the smallest cross angle with n by comparing
the magnitude of the dot product n · i, n · j and n · k.

Our method introduces a nonphysical constraint by allowing fracture only along the
principal planes of the poly-ellipsoid. While this imparts a significant gain in efficiency,
validation of the method requires that we assess the extent to which this constraint affects
the accuracy of the bulk response of a granular material. This assessment is difficult through
direct experimental validation, as there are a great many factors that could affect the overall
accuracy of the simulation method. To study the specific effect of the breakage planes, we
study the response for the special case of spherical poly-ellipsoids. The principle directions
of the spherical particles can be instantaneously rotated to an arbitrary direction so the
break plane can produce the ideal orientation. Here, the rotation of break plane is a strictly
geometric process, and it will not be included in calculation of angular velocity. The response
of the system with freely orientated break planes can then be compared to the identical
system with fixed principal directions (either uniformly or randomly oriented in each sphere).
In this way the limitation of the break plane constraint can be observed directly.
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Figure 10: The ideal break plane should meet two requirements: (1) parallel to the plane generated
the 3 critical contacts, (2) should pass through particle centroid. Suppose the black points are the
critical contacts, and red plane is the ideal break plane, which is parallel to the green plane and
passing through the particle centroid. Constrained by allowing fracture only along the principle
planes, the actual break plane in the model is shown as the black curves.

In the following, we will describe a technique to reduce contact loss caused by sub-
division, by rotating the break plane slightly, and thus rotating the resulting geometry of
sub-poly-ellipsoids.

3.3.1 Random slight rotation of break plane

Compare the sub-poly-ellipsoids and the original poly-ellipsoid as in Figure 11, we can see
that the generated sub-poly-ellipsoids cannot capture the original shape perfectly, thus we
may lose some of the contacts that were on the original particle. To reduce the effect of
loss of contacts, we can rotate slightly the break plane as shown in Figure 12. Further
justification of the rotation of the break plane derives from the tensile stresses occuring
outside the contact region, which may act as a source of fracture initiation as shown in Figs.
4 and 5.

The following key points should be emphasized (1) Only spheres permit free rotation of
their break plane. (2) Currently, our sub-division is along the principle directions of spheres
(we may rotate the principle directions to the ideal break plane for spheres). Then the slight
rotation of break plane can be converted to slight rotation of principle directions. (3) To
simplify implementation, we rotate the principle directions in the local coordinate system of
the sphere first and then transfer the rotated principle directions to the global coordinate
system. Suppose a = (1, 0, 0), b = (0, 1, 0) and c = (0, 0, 1) are the principle directions of a
sphere in its local coordinate system, and α, β, γ are rotation angles along the three axes in
the local coordinate system. α, β, γ are small random angles in [−θ,−0.5θ]∪ [0.5θ, θ]. Then
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Figure 11: The generated sub-poly-ellipsoids cannot capture the shape of the original poly-ellipsoid
perfectly, thus there will be loss of contacts during sub-division. The surface mesh shown is added
to more clearly distinguish the surface of the original particle from that of the sub-particles, the
actual geometry is a smooth polyellipsoid.

Figure 12: Slight rotation of break plane can reduce the loss of contacts. The orange sub-
particles are without random rotation, while grey ones are after random rotation by angle of
0.1745 rad (10.0◦), which can better-recover the original contact.
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rotation matrix is [MathWorld]

R (α, β, γ) = Rx (α) Ry (β) Rz (γ) (19)

=

1 0 0
0 cos α sin α
0 − sin α cos α

cos β 0 − sin β
0 1 0

sin β 0 cos β

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 . (20)

The rotated principle directions in the local coordinate system will then be

a′ =

 cos β cos γ
cos γ sinα sin β − cosα sin γ
sinα sin γ + cosα cos γ sin β

 (21)

b′ =

 cos β sin γ
cosα cos γ + sinα sin β sin γ
cosα sin β sin γ − cos γ sinα

 (22)

c′ =

 − sin β
cos β sinα
cosα cos β

 . (23)

Transforming the rotated principle directions to the global coordinate system will give us
the new principle directions of perturbed sphere having a slight and random rotation, for
which the break plane is also rotated slightly.

To determine the maximum rotation angle, (θ), considering the shape of a newly gener-
ated sub-poly-ellipsoid from sub-division of a sphere (Figure 13), we can use θ as shown in
Figure 13. The movement of the centroid creates the gap between the generated sub-poly-
ellipsoids and the original shape. It can be shown that θ = arctan

(
1
5

)
= 0.1974 rad (or

11.3◦).

3.3.2 Geometry of the sub-poly-ellipsoid

After the break plane is determined, we need to calculate the geometry of the newly formed
sub-poly-ellipsoids. There are three pieces of geometric information for the sub-poly-ellipsoid
that we need to know: (1) its principal directions, here we use the same principle directions
as the original poly-ellipsoid in order to capture the original shape as much as possible; (2)
its principal lengths; and (3) the coordinate of its centroid.

The projected ellipse of a sub-poly-ellipsoid in the x′z′ plane is taken as an example,
as shown in Figure 14. In Figure 14, the centroid of the sub-poly-ellipsoid is shifted from
centroid of the original poly-ellipsoid, O to O′. We assume a′+ = 9

10
a+ in our model. With

this assumption, the centroid of the sub-poly-ellipsoid can be determined. Next, its principle
lengths will be calculated as follows.

The equation of the projection of the sub-poly-ellipsoid in octant 1 is

(x′ − 1
10
a+)2

(raa+)2
+

(z′)2

(rcc+)2
= 1 (24)

where ra and rc is the length ratio of (a+)′ and (c+)′ to (a+) and (c+), respectively.
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Figure 13: Schematic illustrating the method to determine the maximum rotation angle, θ by
movement of the centroid. The geometric parameters 1, 9, and 5 relate to the geometry of the
sub-poly-ellipsoid, described in Section 3.3.2.
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Figure 14: The principle lengths of sub-poly-ellipsoids.
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Equation (24) can be written as

x′ =
1

10
a+ + raa+ sin(α)

z′ = rcc+ cos(α)

α ∈ [0,
π

2
].

(25)

The point (x′, z′) should be always inside of the original poly-ellipsoid for all α, which
means

( 1
10
a+ + raa+ sinα)2

(a+)2
+

(rcc+ cosα)2

(c+)2
≤ 1 (26)

If we choose ra = 0.9, then

r2
c cos2 α + 0.81 sin2 α + 0.18 sinα− 0.99 ≤ 0 (27)

which will lead to

rc ≤
√

0.99− 0.81 sin2 α− 0.18 sinα

cos2 α
, α ∈ [0,

π

2
] (28)

From which, we can solve for the maximum rc = 0.9486833.

3.3.3 Treatment of poorly shaped poly-ellipsoids

For poorly shaped poly-ellipsoids, i.e. those with small radii of curvature (i.e., sharp), we
need to also introduce some geometry constraints on their sub-divisions to avoid unreasonably
sharp sub-poly-ellipsoids features. Sharp poly-ellipsoids are undesirable, because they are
nonphysical and may cause numerical problems.

Let us denote amin as the smaller length between a+ and a− of a poly-ellipsoid, while
amax is the larger one, with the same notation for b and c. The following are several cases of
poly-ellipsoids.

Case (1), amin > 0.2amax, bmin > 0.2bmax, cmin > 0.2cmax as in Figure 15. This kind of
poly-ellipsoids is normal, not sharp, and their break planes are determined by the method
described in Section 3.3. The majority of initial particles in our simulations are of this type.

Case (2), amin < 0.2amax, bmin < 0.2bmax, cmin < 0.2cmax as in Figure 16; the three prin-
ciple axes of the poly-ellipsoid have a bad length ratio, and we do not break this kind of
particle.

Case (3), Two principle axes of the poly-ellipsoid have a bad length ratio, for example
amin < 0.2amax, bmin < 0.2bmax, cmin > 0.2cmax, with c+ + c− > 1.2 max(amax, bmax) as in
Figure 17. In this case, the particle is broken along the plane constructed from the two
principle axes with the bad length ratio, which is the xy plane in this example.

Case (4), two principle axes of the poly-ellipsoid have a bad length ratio, for example
amin < 0.2amax, bmin < 0.2bmax, cmin > 0.2cmax, but with c+ + c− < 1.2max(amax, bmax) as in
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Figure 15: Division of a poly-ellipsoid of case (1) along the plane determined by particle average
stress.

Figure 16: Do not break poly-ellipsoid with three bad ratio principle axles in case (2).
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Figure 17: Divide the poly-ellipsoid case (3) along by the plane with two bad ratio principle axles.

Figure 18: Do not break poly-ellipsoid of case (4).
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Figure 18. In this case, as with Case 1, we do not break the particle.

Case (5), one principle axis of the poly-ellipsoid has a bad length ratio, for example
amin < 0.2amax, bmin > 0.2bmax, cmin > 0.2cmax, as in Figure 19. In this case we follow the
steps outlined in Algorithm 1.

Algorithm 1 Case 5 algorithm

if b+ + b− > 1.2(c+ + c−) then
break along xz plane

else if c+ + c− > 1.2(b+ + b−) then
break along xy plane

else
if Using the Hoek-Brown criterion then

calculate the principle stress along y and z axes
if σy > σz then

break along xz plane
end if

else . Using contact maximum principal stress criterion
Evaluate cross angles to candidate y and z directions
Select break plane.

end if
end if

Note that because of the geometric constraint, we can break a normal -shaped particle at
most only three times, since after three sub-divisions, the generated sub-poly-ellipsoids will
generally be poorly shaped, for which we do not allow further subdivision.

3.3.4 Shape transition of poorly shaped poly-ellipsoids

As a result of our geometric constraints, we can break a normal -shaped particle at most only
three times, since after three sub-divisions, the generated sub-poly-ellipsoids will be very
badly shaped, for which we prohibit sub-division in our particle fracture model. To relax
this constraint and allow further subdivision, we may consider allowing these badly shaped
poly-ellipsoids to slowly evolve to normal shape. This process is called shape transition.
Shape transition should be very slow in order to avoid introducing large energy errors or
sudden contacts caused in this process.

In our current implementation, we apply shape transition only to those sub-poly-ellipsoids
generated from sub-divisions. Simply stated, the shape transition entails slowly moving
the centroid of the bad particles in the direction with bad semi-lengths ratio, causing the
geometry to evolve into a normal shape.

Suppose we have a particle with bad semi-length ratio in principle direction a, then
the target poly-ellipsoid should have larger semi-lengths ratios as in Figure 20, such as
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Figure 19: Division for a poly-ellipsoid of case (5), with break plane aligned along the xy plane.

a′min

a′max
> 0.25. We have the relation

a′min = 0.25a′max (29)

amin + amax = a′min + a′max (30)

Where amin, amax are the current minimum and maximum semi-length in principle direction
a, respectively. And a′min, a′max are target semi-lengths. Then, the length that the centroid
O should be moved is

∆O = amax − a′max (31)

= amax − 0.8(amin + amax) (32)

= 0.2amax − 0.8amin. (33)

Suppose the shape transition will take n steps, then the centroid displacement in each step
is ∆a = (0.2amax − 0.8amin) /n, ∆b = 0, ∆c = 0. Note that we do not introduce additional
velocity from the movement of the centroid, but the shape transition may introduce a small
error in the particle’s mass and momentum.

For poly-ellipsoids with more than 1 bad-ratio axis, this process is applied to each prin-
cipal direction sequentially in each step.

In applying the shape transition process, it was found that even when using 100 step
divisions in the shape transition, very large and sudden contact forces will arise, which cause
the particles to expand catastrophically. Other simulation results suggest that even when
the transition response is stable, it may be unnecessary, so for subsequent results we turn
off this shape transition feature in our particle fracture model.
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Figure 20: Move the centroid in the principle direction with bad ratio to arrive to normal shape.

3.4 Initial spring configuration connecting two sub-poly-ellipsoids

Our initial model included a certain number of spring elements connecting two sub-poly-
ellipsoids as shown in Figure 3, once they are generated by subdivision of an original poly-
ellipsoid. These springs will behave like cohesive zones to simulate the fracture processes of
the particles. With the constraints of the springs, our particle fracture model may show the
three different fracture modes.

3.4.1 Initial spring stiffness

The initial spring stiffness for two sub-poly-ellipsoids are derived based on their Young’s
moduli, their geometries, and the number of springs on a given break plane. Suppose there
are ns springs in one break plane, the Young’s modulus of particles are E, fracture area (area
of the break plane) is A, and the centroid-to-centroid distance of the two sub-poly-ellipsoids
in the break direction is l, then the initial spring stiffness of springs for this plane is

K0 =
EA

nsl
(34)

3.4.2 Correction of the Spring Force

Our current simulations are based on the configuration of spring forces between sub-paticles
described in the previous sections. Tests are conducted using simple hexagonal close-packed
spheres. In analyzing renderings of the particle motion in these simulations, we observed
that breakage of springs introduces a noticeable source of new energy into the system, which
produces spurious vibrations in the samples. This result suggests that the configuration of
springs in these simulations may be incorrect. An analysis of the simulation data showed
that spring forces are nonzero when they are broken, thus breakage of spring will cause a
sudden change in the loading states of sub-particles.

Recall that breakage parameter D is increased proportional to the crack propagation
speed cf at each step. The fracture propagation speed is on the order of 1 km s−1) and the
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sand grain diameter is on the order of 0.6 mm, thus crack transit time is on the order of
6× 10−7 s so that a large decrease in the breakage parameter D, occurs in a single time step.
This leads to large oscillations in the spring force, which may produce macroscale vibrations
the sample. If we use a virtual smaller fracture propagation speed, then the process of spring
breakage will be very long, which is also not reasonable. In consideration of these limitations,
we configure the spring force with an alternative method, which is more straightforward.

After the calculation of the initial cohesive force in each spring fi, the spring force can
be calculated as

f = fi − k∆d, (35)

where k is the stiffness of the spring, and ∆d is the elongation in the spring. The spring
stiffness is determined by the fracture energy of the sand grain. Figure 21 shows the cohesive
law we used for our spring; elongation of spring will decrease the spring force and once the
spring force drops to zero, the spring will break irreversibly. The area of under the force-
displacement curve for the cohesive law is the work done by spring, which should be equal
to the fracture energy Gc · A of the sand grain,

f 2
i

2k
= Gc · A (36)

⇒ k =
f 2
i

2GcA
, (37)

where A is the fracture area for each spring, i.e. the area of the break plane Atotal/ns, ns is
number of springs on the break plane, and the cohesive energy Gc can be calculated from
fracture toughness KIc by Irwin’s formula [Irwin, 1957] as

Gc =
K2
Ic

E ′
(38)

where E ′ = E
1−ν2 . Daphalapurkar et al. [2011] determined from experiment that the fracture

toughness is 1.77MPa ·m0.5 for the silica sand of the type used in our simulation as well as
and others’ experimental work [Kabir et al., 2010, Luo et al., 2011, Bari et al., 2012].

3.4.3 Initial cohesive force in the springs

In order to keep the kinematic states of the particles unchanged during subdivision, we need
to make sure that the acceleration of sub-particles A and B are the same as that of the
original particle O. This can be achieved by applying an initial cohesive force in the springs
as described by Morris et al. [2006].

We denote fA/B as the force acting on sub-particle A by sub-particle B, fB/A as the
force acting on sub-particle B by sub-particle A. With the help of fA/B, the kinematic state
of sub-particle A should be kept the same after sub-division, so the equation of motion of
sub-particle A is

mAaA = FA + fA/B +mAg (39)

28



DEM Particle Fracture Model LLNL-TR-679839

0 1 2 3 4 5 6 7 8

x 10
−4

0

1

2

3

4

5

6

7

8

9

10

s
p
ri
n
g
 f
o
rc

e
 (

N
)

spring deformation (mm)
δ

fi=

Figure 21: Illustration of the spring force-displacement relationship in the cohesive law. The
cohesive law is defined so that the area under the load-displacment curve equals the fracture energy
of the sand grain. In this example the initial spring force is fi = 10 N, the particle radius is 0.3 mm,
and ns = 4; the allowed maximum elongation of the spring is 7.16× 10−4 mm as plotted here.

Where g is body force, and FA the resultant force of all contact forces on sub-particle A.
The resultant contact forces on each sub-particle combine to the resultant contact forces on
the original particle O, FA + FB = FO. From this, we solve for initial cohesive force,

fA/B = FA +mAg−mAaA (40)

= FA +mAg−mAaO. (41)

The point of action for fA/B on sub-particle A is calculated so that the angular acceleration
of sub-particle A is kept the same as that of the original particle O, i.e. αA = αO. And since
fA/B is the resultant force of all the springs on the break plane, the force of each spring can
be calculated from fA/B and the number of springs, ns.

From Newton’s third law, we have in theory that

fA/B = −fB/A (42)

However, it may not be the case in our fracture model, since the sub-particles may lose some
contacts from the original particle as we have described in Section 3.3.1. To correct for this,
we calculate fB/A from the equation of motion of sub-particle B in a consistent manner, with
the new cohesive force acting on sub-particle A,

f′A/B =
fA/B − fB/A

2
. (43)
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4 Simulation of Single Particle Fracture

In order to test our particle fracture model, we compare simulation results for single-particle
fracture with an experimental result of the crushing of a single sand grain2. In this ex-
periment, a sand particle is placed between two flat platens, and the top platen is moved
downward at a constant speed. The sand particles can break under this diametric loading.
In order to make the initial state for the simulation and experiment as similar as possible,
the particle shape used in the simulation is defined as a poly-ellipsoid fit to Synchronized
MicroTomography image of the actual sand particle from the experiment. Figure 22 shows
the force-displacement curve for the simulation and experiment of single particle fracture.
The first peak of the curve corresponds to the formation of an initial crack through the sand
grain, which allows a temporary loss off contact and corresponding drop in the measured
force. As the displacement continues, the large fragments are recompressed, causing the
force to build to the second peak, which marks the onset of crushing/comminution of the
remaining fragments. In order to fit the experiment curve, with emphasis on matching the
two peaks in the experiment, we parameterize the model so that sub-division occurs at the
first peak, and decohesion of the springs occurs at the second peak.
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Figure 22: Force-displacement curve for simulation and experiment of single-particle fracture.

There are several sources of uncertainty in the experimental results, and the subsequent
model parameterization. (1) As mentioned before, significant differences are apparent in the
force-displacement response for similarly shaped Mason sand grains in the experiment, this
is attributed to statistical variability in the material strength. (2) From Figure 22, we can
see that the top platen experience about 0.11 mm movement before the particle is totally
broken, while the diameter of the particle between two platens is only about 0.6 mm. This

2the results are one example from numerous tests from unpublished results from Prof. Khalid Alshibli’s
group at University of Tennessee Knoxville
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suggests that there must be some rearrangement (sliding or rolling contact) of the fragments,
during the loading process. (3) In order to fit the initial slope of the load displacement
curve, it was necessary to define a Young’s modulus for the particle of 4 GPa; this value is
unrealistically low in comparison with data by Daphalapurkar et al. [2011], who determined
that the Young’s modulus for silica sand is 41.4 GPato115.8 GPa. (4) There are not enough
experiments in order to determine a relationship of material strengths to grain size. Because
of these reasons, we decided to use the material strengths in the literature [Hoek and Martin,
2014, Brzesowsky et al., 2011] instead of inferring material strengths from our experimental
results.

Besides, we have also done some parameter tests for this single particle test, which is
summarized in Table 1. This can tell us that we may use 5× 10−8 as the time step in our
simulation.

Dynamic Simulation

ε̇ ∆t (s) result
100 5× 10−7 blow up, spring force is too large
101 5× 10−8 good, same result
101 1× 10−7 good, same result
103 1× 10−7 stable, but result is slightly different
104 1× 10−7 never broken, d ∈ [0, 0.12]mm
104 1× 10−8 never broken, d ∈ [0, 0.12]mm

Dynamic Relaxation

ε̇ ∆t (s) result
10−1 5× 10−7 good
101 5× 10−7 good, same at ∆t = 10−1

103 1× 10−7 never broken, d ∈ [0, 0.12]mm
103 5× 10−7 never broken, d ∈ [0, 0.12]mm

Table 1: Dynamic simulation results. Parameter study for single particle fracture simulations.

5 Numerical results for simulations of Split Hopkinson

Pressure Bar experiment at high strain rate

In this section, we will compare the results from our simulations of different initial samples
with corresponding experimental results [Kabir et al., 2010, Luo et al., 2011, Bari et al.,
2012] in the literature for Split Hopkinson Pressure Bar using silica sand. The SHPB exper-
iment can be idealized as uniaxial compaction at a high strain rate. Thus we can simulate
SHPB experiment as a uniaxial compaction using a small RVE. Previous researchers have
demonstrated that it doesn’t matter whether the RVE is cubic or cylindrical. In this re-
search, we will use a cubic RVE to simulate the SHPB experiment at a strain rate of about
500 s−1. In order to test the effects of different packings, we conduct the same SHPB sim-
ulations using 4 different configurations of spherical particles as shown in Figures 23 to 26,
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(1) randomly packed, polydisperse spheres, (2) randomly packed monodisperse spheres, (3)
hexagonal closed packing of monodisperse spheres, and (4) simple cubic packing of monodis-
perse spheres. The mechanical properties the of particles in each samples are identical,
Young’s modulus E = 60 GPa [Daphalapurkar et al., 2011], Poisson’s ratio ν = 0.17 [Lines],
density for silica sand ρ = 2.65× 103 kg m−3 [Lines], tensile strength for base size xM = 3 mm
is σt = 300 GPa [Brzesowsky et al., 2011], and Weibull’s modulus w = 1.

Figure 23: Random packed sample with dif-
ferent sized spheres, mean radius of 0.3 mm.

Figure 24: Random packed sample with
same sized spheres, radius of 0.3 mm.

Figure 25: Hexagonal closed packed equal-
spheres, radius of 0.3 mm.

Figure 26: Simple cubic packed equal
spheres, radius of 0.3 mm.

5.1 Result for random packed sample with different size

A truncated normal distribution with a mean radius of 0.3 mm, a variance of 0.05 mm, a
minimum radius of 0.1 mm, and maximum radius of 0.45 mm is used to generate spherical
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particles in the initial sample. Then the sample was packed to 55% packing fraction using a
method described in [He et al., 1999]. Note that the orientations of the spheres are randomly
distributed after they are settled down. The sample is in a cubic container with dimension of
6 mm×6 mm×6 mm and contains 955 spheres. The top boundary in the z direction is moved
downward at a constant strain rate of 500 s−1, the other five boundaries are fixed during the
simulation. The simulation results are then compared to SHPB experimental results with
silica sand reported in the literature [Kabir et al., 2010, Luo et al., 2011, Bari et al., 2012],
as shown in Figure 27. This simulation was conducted with each of the techniques of our
particle fracture model, including as cohesive springs, rotation of break planes, random slight
rotation of break planes, and with random orientation of the principal directions.
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Figure 27: Comparison with experiment results show that our particle fracture model can capture
the mechanical behavior very well.

Figure 27 shows that the simulation results lie between those reported by Kabir et al.
[2010] and Luo et al. [2011], but are well below the results reported by Bari et al. [2012]. To
understand the difference between these results, the characteristics of initial powder bed are
summarized in Table 2. Importantly, the aspect ratio of the initial sample H/d of Bari et al.
[2012]’s experiment is so large (3.424) that the results may be dominated by the Janssen
effect (boundary tractions supporting the majority of the load. In fact we can see this
Janssen effect from Fig. 7 in their paper [Bari et al., 2012]. Additionally, Bari et al. [2012]
used static loading in their experiment which is different from others [Kabir et al., 2010, Luo
et al., 2011] and our simulation. In light of these substantial differences, we don’t expect that
our simulation results will agree with Bari et al. [2012]’s result. Considering the difference
in initial sample size and initial density ρ0 between the simulations and experiment, and the
differences in experimental results from the ostensibly similar experimental investigations,
we conclude that our simulations can capture the mechanical behavior of SHPB experiment
very well. For comparison, Kabir et al. [2010] showed that even for experiments with nom-
inally identical initial samples, the test-to-test variability produces larger differences than
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the difference between our model and the experiment; this variability can be seen in Figure
28.

We need to mention that the strain rate for different experiments and simulation are
different as shown in Table 2. However, Kabir et al. [2010], Martin et al. [2013] observed
from their experiments that strain rate did not show significant effect in the mechanical
behavior over range from 470 ∼ 1450 s−1 in Section strain-rate effect in [Kabir et al., 2010],
and 0 ∼ 1000 s−1 in Fig. 24 in [Martin et al., 2013].

height diameter/width
H/d

initial density strain rate
(H, mm) (d, mm) (ρ0, g cm−3) (ε̇, s−1)

Kabir et al. [2010] 9.3 19.05 0.488 1.50 470
Luo et al. [2011] 10.49 12.70 0.826 1.51 675
Bari et al. [2012] 8.15 2.38 3.424 \ static
our simulation 6 6 1 1.439 500

Table 2: Comparison of initial sample properties from experimental and numerical compaction
studies. Bari et al. [2012]’s results are not directly comparable to the others because the value of
H/d is so large that Janssen effect will dominate (Janssen effect is already shown in Fig. 7 in their
paper [Bari et al., 2012]), and the loading is static (whereas the others are dynamic).

Figure 28: Experimental data for SHPB experiments showing significant variability. The red curve
is the mean curve of 26 curves from SHPB experiment using samples with same initial size, initial
density, and same type of sand, i.e. silica sand, figure from [Kabir et al., 2010].

Figure 29 shows the sample after the compaction simulation. The size redistributions
after compression are shown in Figure 30 and Figure 31 for Kabir et al. [2010]’s experiment
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and our simulation, respectively. Both figures show a shift of particle size distribution
before and after compression. Figure 31 shows that predictions of particle breakage in the
simulation of compaction produce a similar bimodal distribution as the experimental results
in Figure 30. Additionally, Figure 31 shows that size appears to converge to a final value
with continued loading, which would suggest that either the material is fully dense, or that
further communution is prevented by the particle-division constraint.

Figure 29: Simulation results showing the post-compaction sample configuration for an initially
random-packed sample of uniformly sized spheres.

The difference between the simulation results (Figure 31) and Kabir et al. [2010]’s ex-
periment result (Figure 30) may come from: (1) differences in the initial size distribution,
and (2) the limitation that a normal -shaped particle can break, at most, only three times;
which prevents the formation of very fine particles.

5.1.1 Effect of particle fracture in SHPB simulation

In order to study how much particle fracture can affect the mechanical behavior of a SHPB
simulations, and to know whether a particle fracture model is necessary or not in predicting
SHPB experiments, we conduct the same uniaxial compression simulation with the same
sample and same parameters, but turn off the capability of particle fracture. This result is
shown in Figure 32, from which we can see that sample without particle fracture is much
stiffer than the samples in experiments. This provides compelling evidence as to the necessity
of developing a suitable particle fracture model for DEM simulations of SHPB experiments.
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Figure 30: Experimentally measured size distribution for the initial sample and for the sample
after a SHPB experiment [Kabir et al., 2010].
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Figure 31: Size distribution for the sample at different strain states from simulation results.
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Figure 32: Comparison of the compaction response from experiments and for DEM simulations
with and without particle fracture. The simulation without particle fracture shows much stiffer
behavior than experiment results, which demonstrates the importance of a particle fracture model
in simulating SHPB experiments.

5.1.2 Effects of different techniques in particle fracture model

To improve the overall performance of our particle fracture model by reducing the loss of
contacts in splitting we implemented several techniques including ideal break plane rotation,
and random slight rotation of the break plane, as described in Section 3.3. Additionally,
we would like to see the effects of cohesive springs in our model, and to determine what
would happen if we conduct a simulation with the same sample but orienting the principle
directions of the spheres in the x, y, z directions as shown in Figure 33 (without rotation of
break plane). In such case, most of break planes would be in z direction, leading to contact
loss in z direction, which is the compression direction. This test is a worst-case-scenario
for loss of contact, and gives an estimate of the magnitude of the error associated with this
mechanism.

Figure 34 shows how the choice in simulation technique affects the results. Considering
the random variable P we used in Weibull’s function of strength, namely Equation (18),
it is expected that there will be some difference between different simulations. However,
the magnitude of the differences between the simulations are within the differences between
experiments such that we can conclude that these additional modifications to the fracture
algorithm (cohesive springs, rotation of break plane, and random slight rotation of break
plane) do not greatly affect the overall mechanical behavior for this sample of random-packed
differently-sized spheres.

This result has important implications to the validity of our approach, indicating that it is
not necessary to rotate the principle directions of particles so that they break along the ideal
break plane; random orientation of the initial break planes produces a similar effect. This is
important because we are not able to arbitrarily rotate the principle directions of ellipsoids
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Figure 33: Packed bed with spheres initially oriented in x, y, z directions, such that most of spheres
will break in z direction, leading to contact loss in this direction.

and poly-ellipsoids. If instead we oriented spheres in initial sample in x, y, z directions,
the response is somewhat softer, which is to our expectation since its most of contact loss
happen in the compression direction. Nonetheless, the deviation is within the experimental
variability, even for this pathological case.

5.2 Results for different sample packing

Figures 24 to 26 show the effect of different sample packings on the simulated response of
SHPB experiments. The radius of spheres in these samples are all 0.3 mm, except for the
random-packed sample with different sized spheres, in which the mean radius of spheres is
0.3 mm. There are 10 × 10 × 10 layers of spheres in x, y, z directions in hexagonal closed
packed samples and simple cubic packed samples, and 1050 spheres in the sample labeled
randomly-oriented, same-sized in Figure 24. The differences between the initial samples
and their strain-rates are summarized in Table 3. Their different stress-strain curves are
compared in Figure 35.

5.2.1 Density effect

As shown in Figure 35 and Table 3, denser samples have much stiffer behavior than looser
samples, which is also reported by Kabir et al. [2010], Luo et al. [2011] from their SHPB
experiments. Other factors that may influence the behavior of different samples include, (1)
larger particles within sample random, diff, i.e. Figure 23 where more defects are assumed
to exist in a larger particle according to a Weibull function, causing larger particles to break
first and then soften the sample, (2) very high coordination number for particles, 12 for
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Figure 34: Comparison of the uniaxial compaction response in SHPB experiments and numerical
simulations with different model features. The sample with initial x, y, z orientation of potential
break planes is somewhat softer, as expected, but the magnitude of the differences between the
simulations are within the magnitude of the differences between the experiments, suggesting that
these modifications to the model don’t critically affect results for this sample type.

height diameter/width
H/d

initial density strain rate
(H, mm) (d, mm) (ρ0, g/cm

3) (ε̇, 1/s)
cubic packing

6 6 1 1.388 500
(Figure 26)
random, diff

6 6 1 1.439 500
(Figure 23)

random, same
6 6 1 1.457 500

(Figure 24)
hex packing

5.009 6.300/5.450 0.795/0.919 1.743 499
(Figure 25)

Table 3: Simulation parameters to investigate effects of sample packing and density.
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Figure 35: Comparison of the uniaxial compaction response in SHPB experiments and numerical
simulations showing the effect of packing type. Denser samples with a structured packing are much
stiffer than looser samples, which is also observed by Kabir et al. [2010], Luo et al. [2011] from
experiments.

hexagonal packed sample in Figure 25 make particles hard to break, which is consistent
with observations from experiments [Lade et al., 1996, Tsoungui et al., 1999, Nakata et al.,
2001, Vilhar et al., 2013], and (3) simple cubic packed sample in Figure 26 is very regular,
which makes it stiff at beginning since all the particles are utilized to sustain the compressive
loading in z direction. Then after many particles break, there are fewer particles that can
sustain the compressive loading, which makes the sample softer.

5.2.2 Sample aspect ratio effect

In order to study the effect of the aspect ratio of samples on their mechanical behavior
(i.e., the boundary effects), we generated 10× 10× 7 layers of spheres in a hexagonal closed
packed sample and a simple cubic packed sample as summarized in Table 4. The results are
plotted in Figure 36, which shows a boundary effect for the shorter samples.

6 Conclusions

We developed an adaptive particle fracture model in poly-ellipsoidal DEM. In our parti-
cle fracture model, poly-ellipsoidal particles will be first sub-divided into several sub-poly-
ellipsoids by external loadings based on Hoek-Brown fracture criterion and the maximum
tensile stress in contacts. Initially these sub-poly-ellipsoids are bonded by cohesive springs,
and further loadings will finally break the particle by breaking these cohesive springs. In
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Packing Type height dia./width
H/d

initial density strain rate
(H, mm) (d, mm) (ρ0, g/cm

3) (ε̇, 1/s)
hex, short 3.540 6.300/5.450 0.562/0.650 1.726 500

hex (Figure 25) 5.009 6.300/5.450 0.795/0.919 1.743 500
cubic, short 6 6 1 1.388 500

cubic (Figure 26) 4.2 6 0.7 1.388 500

Table 4: Simulation parameters to investigate effects of sample aspect ratio, which correlates to
boundary effects.
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Figure 36: Comparison of the uniaxial compaction response in SHPB experiments and numerical
simulations showing the effect of sample aspect ratio. Shorter samples are stiffer, indicating the
influence of boundary effects.
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order to approximate better the original shape of poly-ellipsoid by sub-poly-ellipsoids, we
tried numerical techniques, such as ideal break plane rotation, and random slight rotation
of the break plane, as described in Section 3.3. Also, we considered the statistics and size
effects on particle strengths using Weibull theory.

In numerical examples, we simulated high strain-rate split Hopkinson pressure bar ex-
periments of silica sand. (1) The results showed that our particle fracture model can capture
the mechanical behavior of these experiments very well. (2) Also we showed by numerical
example that particle fracture model is very necessary in studies of dynamic behavior of sand
grains. Otherwise, the numerical model will virtually stiffen the sand samples. (3) Besides,
numerical results showed that the two numerical techniques, i.e. ideal break plane rotation,
and random slight rotation of the break plane, have little effects in our model. It means
that these techniques are not necessary and can be turned off in simulations. (4) Finally,
the effects of density and packing of sand sample are studied numerically. And we observed
the same behavior as reported by Kabir et al. [2010], Luo et al. [2011] from their SHPB
experiments, i.e. denser samples are much stiffer than looser samples. Difference in packing
will cause the difference in coordination number of particles in the samples, our numerical
examples also showed that sample with higher coordination number, such as hexagonal close
packing, is much stiffer, which is consistent with observations from experiments [Lade et al.,
1996, Tsoungui et al., 1999, Nakata et al., 2001, Vilhar et al., 2013].
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method. Géotechnique Letters, 2(July-September):161–166, 2012.

P. A. Cundall and O. D. L. Strack. A discrete numerical model for granular assemblies.
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